Sredstva zajma iz tačke I. Odluke odobravaju se Federaciji pod sljedećim uvjetima:

- iznos zajma: 5.000.000,00 EUR
- rek otplate: 15 godina
- gvoz period: 3 godine
- kamatna stopa: konvencionalna EURIBOR + 1% marža
- dopuštena procentna razlika: točno 1% između podređenog podnog poduzetnika

PRAVILNIK

O NAČINU ODREĐIVANJA EKOLOŠKOG PRIHATLJIVOG PROTOKA

I. OPĆE ODREDBE

Članak 1. Predmet Pravilnika

Ovim Pravilnikom propisuje se način određivanja ekološkog prihvatljivog protoka (u daljnjem tekstu: EPP), metodologija, potrebna istraživanja i procedura ondredivanja EPP, uzimajući u obzir specifičnosti lokalnog okoliša i varijacije EPP, monitoring i način izvještavanja o EPP.

Članak 2. Područje primjenjivosti Pravilnika

Ovaj Pravilnik se primjenjuje na sva vodačka pravilnika koji se odnose na vodni iznos koji je u određenom okrugu odgovoran za otkup vode.

Članak 3. Ciljevi određivanja EPP

EPP se određuje radi održavanja ili vraćanja strukture i funkcije vodenog okoliša i organizacija sprečavanju degradacije stanja voda i okoliša, te njihovog osiguravanja za održivo rješenje vodenih problemi.

Članak 4. Mjesta za određivanje EPP

slučajevima zahvatanja vode za koje je, prema odredbama članka 109. Zakona o vodama, potrebiti vodni akt.

Članak 5.
Izuzeci u određivanju EPP
Izzuzetno, odredbe ovoga Pravilnika ne primjenjuju se u slučaju kada se radi o zahvatanju vode za javno vodosnabdijavanje stanovništva vodom za picće i kada se ne mogu ispuniti zahtjevi za EPP propisani ovim Pravilnikom. U ovom slučaju za EPP primjenjuje se odredba članka 62. stavak 3. Zakona o vodama, uzimajući u obzir mogući prevladavajući javni interes.

Članak 6.
Definicije
Pored definicija iz članka 4. Zakona o vodama, za potrebe ovoga Pravilnika uvode se i sljedeće definicije:
1) "maksimalni ekološki potencijal" označava visoko ekološko stanje jako izmijenjenih vodnih tijela;
2) "ekološki prihvatljiv protok (EPP)" označava minimalni protok koji osigurava očuvanje prirodne ravnoteže i ekosustava vezanih za vodu;
3) "komponente ekološkog režima tečenja" označavaju različite elemeante EPP-a (minimalan protok, sezonske varijacije protoka, "pleč protok i sl.") koji pokreću ekološke i hidromorfološke procese potrebite za održavanje struktura i funkcioniranje vodnih ekosustava;
4) "srednji minimalni protok (\(\bar{Q}_{\text{min}} \))" označava aritmetičku sredinu minimalnih godišnjih vrijednosti srednjih dnevnih protoka u profilu vodotoka u razmatranom periodu. Izražava se u m³/s i računa po izrazu:
\[
\bar{Q}_{\text{min}} = \frac{\sum_{i=1}^{N} Q_{\text{min},i}}{N},
\]
gde je \(Q_{\text{min},i} \) minimalni srednji dnevni protok u \(i \)-toj kalendarskoj godini, a \(N \) broj godina u razmatranom periodu;
5) "srednji protok (\(Q_{\bar{S}} \))" označava aritmetičku sredinu srednjih godišnjih vrijednosti protoka u profilu vodotoka u razmatranom razdoblju. Izražava se u m³/s i računa po izrazu:
\[
Q_{\bar{S}} = \frac{\sum_{i=1}^{N} Q_{i}}{N},
\]
gde je \(Q_{i} \) srednji godišnji protok u \(i \)-toj kalendarskoj godini, a \(N \) broj godina u razmatranom periodu;
6) "srednji dekadni protok (\(Q_{\bar{D}} \))" označava aritmetičku sredinu srednjih dekadnih vrijednosti protoka u profilu vodotoka. Izražava se u m³/s i računa po izrazu:
\[
Q_{\bar{D}} = \frac{\sum_{i=1}^{N} Q_{D(i),i}}{N},
\]
gde je \(Q_{D(i),i} \) srednji dekadni protok u \(i \)-toj dekadi u \(i \)-toj kalendarskoj godini, a \(N \) broj godina u razmatranom periodu;
7) "sezonska varijacija protoka" označava vremensku raspodjelu minimalnih protoka potrebitih za uspostavu vremenske varijabilnosti režima tečenja,
sukladno zahtjevima vrsta faune i flore pripadajućih vodnim tijelima;
8) "pleč protok" označava hidrološki događaj izazvan vještačkim pražnjenjem hidrosakumulacije, kako bi se održala dimenija poplava rijeke i močvara, koja je potrebna za očuvanje obalnih ekosustava;
9) "maksimalni hidrološki potencijal" označava hidrološki režim vještačkog ili jako izmijenjenog vodnog tijela koji odgovara uvjetima "maksimalnog ekološkog potencijala".

II. METODOLOGIJA ZA ODREĐIVANJE EKOLOŠKOG PRIHATLVLIH PROTOKA

Članak 7.
Procedura za računu izbora metode za određivanje EPP
S obzirom na različitosti ekosustava iz članka 2. stavak 2. ovoga Pravilnika, izbor metode za određivanje EPP provodi se sukladno proceduri određenoj u Pravilniku 1. koji je sastavni dio ovoga Pravilnika, u odnosu na ekološki značaj vodnih tijela, njihove različite potrebe i ciljeve zaštite vode, te u odnosu na korisne vode.

Članak 8.
Razine procjene EPP
Procedura iz članka 7. ovoga Pravilnika, sadrži dvije razine procjene EPP, i to:
1) I RAZINA PROCJENE – opća procjena EPP za sva vodna tijela primjenom hidrološke metode određene ovim Pravilnikom
2) II RAZINA PROCJENE – posebna procjena EPP za vodna tijela u zaštićenim područjima proglašena sukladno članku 65. Zakona o vodama i druga zaštićena područja iz registra zaštićenih područja iz članka 29. točka 4. Zakona o vodama, kao i za područja koji nisu proglašena zaštićenim, a koja imaju izuzetne vrijednosti za očuvanje (nazočnost ugroženih staništa ili vrsta, historijsko-kulturološke i ambijentalne vrijednosti itd.), u kojim slučajevima se EPP utvrđuje korištenjem bioloških i ekoloških kriterija (uključujući holističke i hidrauličke studije, a naročito modele staništa, itd.), kao dodatak hidrološkoj metodi iz točke 1) ovoga stavka.
Ako se radi o zaštićenom području pričuva kopnenih voda iz članka 69. stavak 1. Zakona o vodama, aktivnosti koje se provode na tom području moraju biti sukladne propisima iz stavka 3. istoga članka.

Članak 9.
Opća procjena EPP
Opća procjena EPP provodi se primjenom hidrološke metode određene ovim Pravilnikom.
Ovisno o potencijalnom utjecaju aktivnosti na prirodnji hidrološki režim vodnog tijela, potrebno je odrediti hidrološke komponente EPP koje su naročito pogođene, kao što su minimalni protok, sezonske varijacije protoka i "pleč protok.

Članak 10.
Hidrološki podaci
Za utvrđivanje EPP koriste se hidrološki vremenski nizovi koji predstavljaju prirodnji hidrološki režim, sa sljedećim karakteristikama:
1) bez grešaka i nedostajajućih podataka;
2) trajanja od najmanje 10 godina (najbolje redom), odsimno trajanja 30 godina u kontinutetu (relevantno razdoblje 1961-1990), kod god je to moguće;
3) vremenski nizovi na bazi srednjih dnevnih protoka, kad god je to moguće;
4) zastupljenost različitih hidroloških uvjeta, uz uravnotežen između kišnih i sušnih godina.
U slučaju da podaci prirodnog hidrološkog režima za duži vremenski period nisu dostupni, isti se mogu odrediti na osnovu hidroloških podataka sa druge, susjedne ili druge odgovarajuće vodomjerne stanice za koju postoje podaci hidrološkog monitoringa (u daljem tekstu: reperna stanica).

U slučaju da se podaci proračunavaju na temelju hidroloških podataka sa reperne stanice, radi obezbijedenja dovoljno podataka za uspostavljanje zadovoljavajuće korelativne veze između protoka vode u odgovarajućem profilu vodnog tijela za koji se određuje EPP i protoka u profilu reperne stanice, potrebno je u odgovarajućem profilu vodnog tijela za koji se određuje EPP vršiti osmatranje vodosta u periodu od najmanje jednu godinu dana, pri čemu je potrebno izvesti simultana hidrometrijska mjerenja protoka u profilu vodnog tijela za koji se određuje EPP i u profilu reperne stanice.

Simultana hidrometrijska mjerenja protoka iz stavka 3. ovoga članka potrebno je izvesti u najmanje šest navrata pri različitim hidrološkim situacijama, tako da je moguća konstrukcija krive protoka za odabrani reperni stanici potrebno je utvrditi korelaciju između protoka u profilu za koji se utvrđuje EPP i profilu reperne stanice, na temelju parova vrijednosti osmatranja iz perioda najmanje jedne godine dana. Korelativna veza se smatra zadovoljavajućom ukoliko je vrijednost koeficijenta korelacije k ≥ 0,7, uz obvezu kontrolu preko intervala povijerenja 95% sa obzajloženjem.

Članak 11.
Određivanje EPP općom procjenom EPP

Proračun vrijednosti EPP (Q_{\text{EPP}}) vrši se na temelju vrijednosti parametara \(Q_{\text{min}}, \frac{Q}{S_{\text{r}}} \) i \(Q_{\text{DEK}(j)} \) vodnog tijela u profilu za koji se određuje EPP. Vrijednosti navedenih parametara računaju se na temelju hidroloških podataka iz članka 10. ovoga Pravilnika. \(Q_{\text{EPP}} \) će se proračunati na temelju slijedeće jednačine:

\[
Q_{\text{EPP}} = \begin{cases} 1,0 \times Q_{\text{min}} & \text{za } Q_{\text{DEK}(j)} < Q_{S_{\text{r}}} \\ 1,5 \times Q_{\text{min}} & \text{za } Q_{\text{DEK}(j)} \geq Q_{S_{\text{r}}} \end{cases}
\]

U slučaju, kada je \(Q_{\text{DEK}(j)} = 0 \), ili \(Q_{\text{EPP}} < 1,25 \), \(Q_{\text{EPP}} \) će se proračunati na temelju slijedeće jednačine:

\[
Q_{\text{EPP}} = \begin{cases} 0,1 \times Q_{S_{\text{r}}} & \text{za } Q_{\text{DEK}(j)} < Q_{S_{\text{r}}} \\ 0,15 \times Q_{S_{\text{r}}} & \text{za } Q_{\text{DEK}(j)} \geq Q_{S_{\text{r}}} \end{cases}
\]

U slučaju kada se ne raspolaže dekadnim vrijednostima protoka \(Q_{\text{EPP}} \) će se proračunati na temelju slijedeće jednačine:

\[
Q_{\text{EPP}} = \begin{cases} 0,1 \times Q_{S_{\text{r}}} & \text{za period svibanj} - \text{listopad} \\ 0,15 \times Q_{S_{\text{r}}} & \text{za period studeni} - \text{travanj} \end{cases}
\]

U slučaju da se EPP računa za vodno tijelo nizvodno od hidroakumulacije potrebno je odrediti i maksimalni dozvoljeni protok (ispuštanje iz akumulacije) za sušne periode tijekom godine u visini od dvostrukog \(Q_{\text{DEK}(j)},i \) za predmetnu dekadu.

Članak 12.
Određivanje fleš protoka

Fleš protok je potrebit za održavanje fizičkih i kemijskih uvjeta korita rijeke, poboljšanje povezanosti s poplavnim pojasom i pokretanje transporta nanosa nizvodno od profila za koji se utvrđuje fleš protok. Fleš protok se određuje za dionice rijeke nizvodno od hidroakumulacije čiji kapacitet prelazi 10% od volumena prosječnog godišnjeg protoka u datom profilu. Fleš protok se ispušta u periodima kad se u prirodnim uvjetima tečenja javljaju najviši vodostaji.

Ispuštanje fleš protoka će se vršiti po posebnom projektu izrađenom od strane pravne osobe koja ispunjava uvjete i kriterije propisane podzakonskim propisom iz članka 120. stavak 6. Zakona o vodama. U tom projektu treba odrediti vrijednost, vrijeme ispuštanja, dinamiku i trajanje fleš protoka, uz uvažavanje hidroloških, morfoloških, bioloških i fizičko-kemijskih karakteristika rijeke.

Pri izradi projekta iz stavka 4. ovoga članka, potrebno je uzeti u obzir moguće efekte na područje potencijalno pogodeno poplavom, moguće štetne posljedice na okoliš i mogući štetni utjecaji na infrastrukturu.

Članak 13.
Izvještaj o proračunu EPP - opća procjena

Izvještaj o proračunu EPP - opća procjena obvezno sadrži:

1. Opći zemljiopski podaci (zemljiopski položaj, klima, regionalne karakteristike područja);
2. Hidrogeološke i geološke karakteristike sliva, pripadnost vodnom tijelu, geološke karakteristike na području vodozahvata;
3. Podaci o "potencijalnoj mjestu i načinu korištenja voda" (lokacija planiranog vodozahvata sa koordinatama, nadmorska visina, količina i dinamika zahvatanja, temeljne karakteristike tehničkog rješenja vodozahvata);
4. Dodijeljene koncesije i izdati vodni akti na uzvodnom i nizvodnom dionici vodotока (lokacije vodozahvata sa koordinatama, nadmorska visina, količina i dinamika zahvatanja);
5. Hidrološki proračun EPP za odabrani profil vodnog tijela koji sadrži:
 - procjena raspoloživosti hidroloških podataka za profil, sa obrazloženjem izbora repernih stanica: lokacija sa koordinatama, površina sliva, period rada, kvaliteta podataka,
 - pregled hidrološke obrade za reperni stanici, sa izračunatim vrijednostima srednjeg minimalnog, srednjeg i srednjeg dekadnog protoka u razmatranom periodu,
 - rezultate uzrokovanih ili simuliranih hidrometrijskih mjerenja protoka, koji moraju unijeti podatke o uporabljenoj opremi, metodi i vremenu kad su mjerenja izvedena,
 - rezultate proračuna parametara srednjeg minimalnog, srednjeg i srednjeg dekadnog protoka i površine sliva u profilu vodnog tijela za koji se određuje EPP,
 - proračun EPP po dekadam tijekom godine,
obrazloženje postojanja osnova/obveze primjene članka 12. ovoga Pravilnika, koji se odnosi na određivanje fleš protoka;

6. Strožno mišljenje (ocjena) biologa, da li je potrebna posebna procjena EPP iz članka 8. stavak 1. točka 2. ovoga Pravilnika, na temelju ispitivanja statusa zaštićenosti područja u kojem se vodno tijelo nalazi i nazočnosti ugroženih vrsta;

7. Popis korištene literature.

Članak 14.

Posebna procjena EPP

Posebna procjena EPP vrši se za vodna tijela i područja iz članka 8. stavak 1. točka 2. ovoga Pravilnika, uključujući i područja za koje su vezani ekosustavi čiji struktura i funkcioniranje zaštite potrebuju poseban pristup za određivanje EPP, kao što su jezera i močvara.

Posebna procjena EPP u slučajevima iz stavka 1. ovoga članka će se raditi korištenjem bioloških i ekoloških kriterija (uključujući holističke studije, modele staništa, hidrauličke studije, itd.), kao dodatak hidrološkoj metodi iz članka 8. stavak 1. točka 1. ovoga Pravilnika.

Članak 15.

Posebna procjena EPP u zaštićenim područjima

Za određivanje EPP posebnom procjenom u zaštićenim područjima (u daljnjem tekstu: EPP u zaštićenim područjima) potrebno je uzeti u obzir stavke 1. članka 18. odredbe 2. ili 3. ovoga Pravilnika, aako se može imati značajan utjecaj na to područje.

Utvrđena vrijednost EPP u zaštićenom području mora omogućiti:

1) osiguranje, očuvanje strukture i funkcije ekosustava i njegovih pripadajućih elemenata;
2) osiguranje definiranih ekoloških potreba staništa i vrsta (posebice onih najugroženijih i najosjetljивijih na promjene protoka), za održavanje dugoročne ekološke funkcije o kojoj ovise;
3) održavanje zahtijevane razine kakvoće vode.

U ovom tekstu se iz stavka 1. ovoga članka radi se analiza odgovora ekosustava (procesi, staništa ili vrste) u odnosu na promjene u protoku, a narotičo:

1) komponente vodnih tijela na koja se odnose (pojedine vrste, zajednice, procese);
2) "događaje" koji trebaju biti zaštićeni (npr. migracija riba, mirisnje staništa, kaljenje u vodi);
3) kvanifikaciju ciljeva u obliku vrijednosti koji događaj treba dostići ili iznos devijacije u odnosu na prirodnu vrijednost i sl.;
4) "kriterij uspjeha", s detaljno navedenim uvjetima koje treba ostvariti, kako bi se osiguralo postizanje cilja;
5) "mjeru uspjeha" ili varijablu koja se treba mjeriti, te vrijednost koja se mora postići.

U ovim slučajevima gdje to gospodarske, društvene i kulturne potrebe dozvoljavaju, osiguravanje EPP u zaštićenim područjima treba imati za cilj postizanje što je moguće prirodnijeg režima tečenja, narotičo ako se radi o:

1) zaštićenim područjima čije očuvanje i opstanak u znatnoj meri ovisi o EPP;
2) endemskim staništima i rijetkim vrstama, u kritičnom stanju, nepovoljnom za očuvanje.

Članak 16.

Posebna procjena EPP za područja sa izuzetnim vrijednostima za očuvanje

Za procjenu efekata EPP, područje sa "izuzetnom vrijednošću za očuvanje" predstavlja područje koje redovito održava značajnu populaciju vrste čije preživljavanje ovisi o vodi, a nalazi se na listi ugroženih ili ranjivih vrsta.

Pri određivanju EPP za područja iz stavka 1. ovoga članka primjenjuju se odredbe članka 15. ovoga Pravilnika.

Članak 17.

Posebna procjena EPP za jezera i močvara

Za utvrđivanje potreba za vodom jezera i močvara (EPP za jezera i močvara) uzimaju se u obzir slijedeći kriteriji:

1) dotoci vode kroz hidrogrački sustav koji trebaju održavati razinu vode (uključujući površinske i podzemne vode);
2) ako su ovisni o podzemnom akviferu, dotoci površinske vode treba odrediti tako da pomjeraju se uslijed ljudskih aktivnosti ne uzrokuju:
 - neposredno vrijeme zahtijeva koji odlučuje za pridružene površinske vode,
 - značajne štete na kopnene ekosustave koji direktno ovisi o podzemnim vodama;
3) ako su jezera ili moćvara dio zaštićenog područja, potrebe za vodom utvrđuju se provedbom pravila za očuvanje zaštićenog područja.

U procesu utvrđivanja potreba za vodom za jezera i močvara uzet će se u obzir najmanje slijedeći elementi:

1) ravnoteža sustava, po mogućnosti identifikacija dotoka površinskih i podzemnih voda, kao i izlaza i gubitaka vode;
2) sezonske varijacije i područja i dubina unutar-godišnjih poplava u prirodnim uvjetima, za identifikacijom vodnih perioda;
3) sezonske i unutar-godišnje varijacije hemizma voda, u odnosu na sastav i koncentracije;
4) sastav i struktura bioloških zajednica (u posebnim pažnjam na vegetaciju ili druge ugrožene ili ranjive vrste).

Metodološki pristupi za određivanje potreba za vodom jezera i močvara dati su u Privitku 2. koji čini sastavni dio ovoga Pravilnika.

Članak 18.

Izvješće o posebnoj procjeni EPP

Izvješće o posebnoj procjeni EPP izrađuje po slijediću datom u Privitku 3. koji čini sastavni dio ovoga Pravilnika.

Sve korake iz izradi procjene EPP treba detaljno obrazložiti.

Izvješće o posebnoj procjeni EPP evaluira mjernodavna Agencija za vodeno područje, sukladno odredbi članka 20. stavak 2. ovoga Pravilnika.

Članak 19.

Primjena EPP

EPP utvrđen na način propisan ovim Pravilnikom, primijenjuje se tijekom cijele godine, uključujući i situacije kada je prirodni protok na mestu zahvata manji od proračunatog EPP. U toj situaciji se za EPP uzima vrijednost prirodnog protoka na mestu vodozahvata, te u toj situaciji nestječe prava iz vodnog akta ne smije zahvati vodu.

Članak 20.

Procjena EPP u postupku dobijanja prethodne vodne suglasnosti

Izvješće o procjeni EPP u profilu vodozahvata dio je dokumentacije propisane podzakonskim propisom iz članka 107. stavak 4. Zakona o vodama potrebne za izdavanje prethodne vodne suglasnosti.
Evaluaciju Izvješća o procjeni EPP vrši mjedovna Agencija za vodno područje, u odnosu na opće karakteristike vodnog područja, pritiska, zaštićena područja, te ciljeve upravljanja vodama iz plana upravljanja vodama vodnog područja.

EPP iz pozitivno evaluiranog Izvješća o procjeni EPP ugrađuje se u pripadajući plan upravljanja vodama vodnog područja.

Članak 21.
Određivanje EPP za kako izmijenjeno vodno tijelo
Vodno tijelo će biti označeno kao kako izmijenjeno na temelju hidroloških promjena, ako zadovoljava dva uvjeta:
1) ukoliko bi promjene vezano za EPP, određen na način propisan ovim Pravilnikom, imale negativan efekat na različite oblike korišćenja voda, ili na šire okruženje;
2) da je promjena načina ispunjavanja zahtjeva za korišćenje nedostatna za osiguranje EPP određenog hidrološkog pristupom.

Da bi se odredio EPP za kako izmijenjeno vodnom tijelu, mora se utvrditi "maksimalni hidrološki potencijal", nakon usvajanja svih mogućih mjera za smanjenje pritiska na resurs.
U slučajevima gdje postoji izuzetna vrijednost za očuvanje, prema članku 16. ovoga Pravilnika, potrebno je uraditi posebnu procjenu po kriterijima iz tog članka.

III. MONITORING I IZVJEŠĆAVANJE
Članak 22.
Zahtjevi o načinu monitoringa
Monitoring EPP uspostavlja vlasnik, odnosno korisnik vodnog objekta radi praćenja utvrđenog EPP. Monitoring EPP se vrši prema Programu monitoringa.
Program monitoringa iz stavka 1. ovoga članka je sastavni dio tehničke dokumentacije koja se podnosi uz zahtjev za izdavanje prethodne vodne suglasnosti, prema odredbama podzakonskog propisa iz članka 107. stavak 4. Zakona o vodama.
Program monitoringa EPP mora biti projektovan tako da se njegovom provedbom dobiju pouzdan podaci o EPP.

Članak 23.
Monitoring EPP
Vlasnik odnosno korisnik vodnog objekta mora obezbijediti kontinuirani monitoring EPP, tako da može nesumnjivo dokazati da su u svakom trenutku bili ispunjeni zahtjevi u pogledu EPP, te da u vrijeme trajanja protoka u vodotoku manjeg od utvrđenog EPP, nije bilo zahvatanja vode, odnosno nije bilo korišćenja vode (osim zahvatavanja, odnosno korišćenja vode iz hidroakumulacije).

Monitoring iz stavka 1. ovoga članka vrši se:
1) na profilu vodotoka neposredno uzvodno od vodozabavnog objekta ili sustava objekata vodozahvata,
Privitak 1. Okvira metodološka shema procjene EPP
Privitak 2. Metodološki pristupi za određivanje potreba
za vodom jezera i močvara

Određivanje potreba za vodom jezera i močvara rješavaće se primjenom najmanje jednog od slijedećih pristupa:

Privitak 3. Sadržaj izvješća posebne procjene EPP

Izvješće o procjeni EPP treba sadržavati najmanje sljedeća poglavlja:

1. UVOD

- Opće informacije o predloženom projektu, uključujući lokaciju, vrijeme i količinu zahvaćene vode
- Ciljevi procjene EPP
- Evaluacija EPP procijenenog hidrološkom metodom
- Obrazloženje zašto ciljevi za rijeku i obalski ekosustav rijeke na kojoj je vodozahvat neće biti postignuti EPP određenim hidrološkom metodom

2. KARAKTERISTIKE ISTRAŽNOG PODRUČJA

- Opći zemljopisni podaci (položaj, klima, regionalne karakteristike područja)
- Hidrogeološke i geološke karakteristike sliva, pripadnost vodnom tijelu, geološke karakteristike na području vodozahvata
- Hidrologija i morfologija rijeke
- Ekološke karakteristike, uključujući kemijsko i ekološko stanje vodnog tijela
- Zagađenje rijeke
- Korištenje rijeke
- Upravljanje rijekom

3. METODOLOGIJA

- Prikupljanje podataka
- Prikupljanje uzoraka
- Hidrologija i geomorfologija
- Akvatična flora i fauna
- Fizičko-kemijski parametri

4. REZULTATI

- Riječna hidrologija i morfologija
- Riječna ekologija
- Fizičko-kemijski parametri
- Identifikacija ekoloških i ostalih vrijednosti rijeke
- Definacija kritičnih elemenata za dostizanje ciljeva za rijeku
- Detalno objašnjenje elemenata i njihova mjerenja, koje je prevladavalo u odluci za procjenu vrijednosti EPP
- Procjena EPP
5. LITERATURA

Svi koraci u procjeni EPP trebaju biti detaljno objašnjeni i podržani argumentima u izvješću eksperata. U procesu procjene EPP potrebno je izabrati najranijije i njosjetljivije biološke/ekološke elemente, na koje vodozahvat ima najveći utjecaj. EPP treba odrediti tako da se održe strukture i funkcije rijeke i obalskog ekosustava, a takođe i njosjetljiviji elementi rijeke i obalskih ekosustava, slijedeći ciljeve koji trebaju biti postignuti. Uzorkovanje se mora obaviti u vrijeme najmanjih protoka, kada je utjecaj zahvatanja vode na ekosustav najveći. Svi koraci u procjeni EPP trebaju biti detaljno objašnjeni i podržani argumentima u izvješću eksperata.

Za postizanje ciljeva za rijeku i obalski ekosustav, temeljne komponente režima EPP trebaju uključivati slijedeće protoke:

- protoke održanja korita, koji održavaju formu i veličinu, oblik i strukturu u rijeci
- protoke održanja staništa, koji održavaju staništa i uklanjaju mulj i organske taloge
- protoke očuvanja vodenih i obalskih ekosustava, te održanja povezanosti staništa
- minimalne prihvatljive protoke koji omogućavaju maksimalna staništa za odabrane ciljne vrste prirodnog biljnog i životinjskog svijeta
- protoke koji omogućavaju sezonske riječne poplave
- protoke koji neće pogoršati dobro kemijsko i ekološko stanje, ili dobar ekološki potencijal rijeke.

Za usvajanje ekološki prihvatljivog režima tečenja u određenoj godini (srednje sušna, sušna, u slučaju dužeg sušnog perioda), treba uzeti u obzir hidrološke uvjete u slivu i bilo koje druge okolnosti za upravljanje.
Privitak 4: Uvjeti koje je potrebno ispuniti pri postavljanju vodomjernih stanica i za obezbjeđenje jednoznačne veze razina vode - protok

Izbor mjesta – opći uvjeti dobre pozicioniranosti mjerne stanice u prirodnom koritu:
1. Vodotok je generalno u pravcu na dovoljnoj dužini da se eliminišu lokalni utjecaji, uzvodno i nizvodno od stanice;
2. Ukupni protok je skoncentriran u jedan proticajni profil pri svim razinama (ne u više rukavaca);
3. Korito nije sklopo eroziji ili zatrpavanju i slobodno je od vodene vegetacije;
4. Obale su stabilne, dovoljno visoke i slobodne od žbunja;
5. Nazočni su prirodni uvjeti stabilnosti u obliku kamenitog korita pri malim vodama, većeg podužno pada ili kaskade koja prouzrokuje nepotopljeno tečenje, što omogućava sigurnu i stalnu jednoznačnu vezu razine vode i protoka. Ako nema prirodnih uvjeta stabilnosti, potrebna je vještačka kontrola;
6. Stanica se nalazi izvan zone utjecaja nekog drugog vodotoka i sl.;
7. Omogućen pristup za održavanje i mjerenje pri svim vodostajima.

Kontrola razina-protok:

Mjerni objekti:
Mjernim objektom se treba osigurati stabilnost veze protoka i razine, ali i osjetljivost, tj. male promjene protoka trebaju uzrokovati značajnu promjenu razine. Mjerni objekti se u pravilu koriste za mjerenje manjih protokova koji se teško mogu mjeriti u prirodnom profilu vodotoka. Svi mjerni objekti moraju zadovoljavati ekološke uvjete: nesmetana migracija riba i postavljene kritične parametre.